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Abstract-Vapor liquid counterflow in porous media arises in processes such as heat pipes, oil recovery 
and geothermal systems. While previous studies analyzed these processes separately. this paper presents a 
unified description. The analysis includes capillarity, heat conduction. and Kelvin effects. The importance 
of each term to the various applications is examined. Significantly. it is found that the critical heat flux in 
a heat pipe is not constant, hut increases with decreasing permeability. A threshold permeability is also 
identified, below which steady states may not exist. Related conclusions are reached regarding liquid- 

dominated geothermal systems. 

INTRODUCTION 

THE STEADY-state counterflow of a liquid and its vapor 
in porous media arises in many processes driven by 

temperature gradients. Large scale applications 

involve geothermal systems [l-4], thermal oil recov- 
cry [5]. and nuclear waste disposal [6,7]. Laboratory 

investigations have concentrated on porous heat pipes 
[8,9], boiling [IO-121 and drying [13]. All these pro- 
cesses share many common aspects. principally phase 
equilibria and their interplay with fluid flow, heat 
transfer and capillarity. 

Although a precise description of flow with vapor- 
liquid equilibria in porous media is not presently 
available, the conventional approach that vapor and 
liquid phases obey Darcy’s law with saturation-depen- 

dent permeabilities is often considered adequate. 
Steady-state vapor-liquid flows in porous media have 

been modclcd with such methodology for several dec- 
ades [14]. Recent applications to steam-water coun- 
terflow include studies by Martin et al. [I 51, Schubert 

and Straus [ 161. Bau and Torrance [I71 and Udell 
[18,19]. The first two papers focused on geothermal 
applications. thus they neglected capillarity, but 
included heat conduction. By contrast, Udell [I 8, 191 
considered heat pipes. in which capillarity pre- 
dominates, but conduction is neglected. In the same 
context. Bau and Torrance [I 71 presented a simplified 
analysis, where both conduction and capillarity are 
negligible. 

While these studies have been instrumental in the 
understanding of vapor-liquid counter-flow, several 

issues arc still obscure. In the context of heat pipes. 
the interplay between capillarity and heat conduction 
is unresolved, particularly in regards to the critical 
heat flux. The latter is appropriate to bottom heating 

t Author to whom correspondence should he addressed. 

and it is defined [I 7, 191 as the minimum heat flux 

value for the occurrence of dry-out. that is for a vapor 
zone to exist at the heated end. The characterization 

of flow regimes is incomplete for heat fluxes lower 
than the critical, where present models predict an 

infinite, two-phase zone of constant saturation. 
Finally, the importance of Kelvin effects is unclear. 
While vapor pressure lowering due to capillarity is 

frequently used in such models [l8. 20, 211, its prac- 
tical relevance has not been assessed. In the context 

of geothermal systems. the possible existence of two 
flow regimes (vapor- and liquid-dominated) has long 
been proposed [15]. It is not clear. however. whether 
both regimes are indeed acceptable, and what are the 
selection criteria. 

Part of the difficulty lies in previous approxi- 
mations, which break down in various regions. To 

alleviate this problem, a more detailed study is necess- 
ary. This forms the main objective of this paper. Also 
recognizing the fact that previous studies in heat pipes 
and in geothermal problems are different applications 

of essentially the same process (although temperature 
gradients, thus flow directions, may be of opposite 
sign) a common formalism should bc possible. For 
this reason, we consider a complete formulation that 
includes capillarity. heat conduction, phase equilibria 
that includes vapor pressure lowering. 

The flow model is taken to be an extension of 
Darcy’s law with the use of relative permeabilities, 
and allows for vapor pressure lowering due to Kelvin 
effects. Both representations are based on the premise 

of capillary control at the pore level, usually enforced 
for low values of capillary and Bond numbers, and 
when temperature gradients arc relatively low. The 
assumption that pore wall curvature stabilizes vapor- 
liquid interfaces is implicit. Such conditions are 
necessary for a description in terms of saturation- 
dependent relative permeabilities and capillary press- 
ure functions. Precise criteria for their validity are 
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NOMENCLATUHE 

dirn~r~sio~iless vapor prcssurc 
dimensionless Kelvin group 
gravitational constant [L T ‘1 

diin~rlsionl~ss capillary pressure 
perrncability [L’j 

(L,/M,)/T,,K) [dimensionless] 
latent hear [L’T ‘1 

dinlcnsionless evaporation rate 
molecular weight of water [Mmol _ ‘1 

pernl~abiiity exponent ~dinl~nsionl~ss] 
pressure [M L ‘T ‘1 
heat fux [M T ‘1 

gas consrant [L’T ’ mol ’ K] 

(kp, L,ci);(jl\.: h&r,,) [dimensionless] 
((/,,~)1!(~“7’,,\.k!lAl)) [dimensionless] 
I+ :A{! [dimcnsionlcss] 
jr, ;ii, [dimcnsionlcss] 

(liL,P,,,(7’,,)1’~)“(Ir,,i,, T,,) 
[dimensionless] 

(P,$,( T,,) v:k):fn) [dimensionless] 
0, ‘L,, [dinlcnsionlcss] 
/I,, :A/) [dimcusinnlcss] 
~ltLi~lti[~n [dimcnsi~)nless] 
tempclaturc [K] 
liquid molar wlumc [L’mol ‘1 
voluntetric Row rate (L T ‘1. 

temperature gradient [K L. ‘1 
I /KR, [dimensionless] 
angle of inclination [deg] 
thermal ~~)ndu~~~~it~ [M L’T ’ K ‘1 
ciscosity [M L ‘T ‘1 
dimensionless distuncc 
density [M L ‘1 

PI -ih w L 7 
surpdce tension [M ‘r ‘1 
temperature [dil~l~nsionlcss] 
heat flux [dimensionlcssj. 

Subscripts 
b threshold 
c capillary 
cr criIica1 
L liquid 

t 
relative 
vapot 

VO saturation 
0 rcfci cnce 
I region I 
II region II 
111 region 111. 

Superscript 
0 outer solution. 

currently under development, that parallel related 
problems of bubble growth in porous media [2]. 

We first derive a general dimensionless represen- 

tation, for steady-state. vaporPliquid counterflow. 
? he heat pipe and gcothcl ma1 problems are sub- 
sequently obtained as special cases and thoy arc 
analyzed in scparatc sections. We identify the formet 
as the iimi! oi‘ small conduction and the latter as 
the limit of small capillarity. Hence. WC invcsupate 

boundary layers due to vapor plcssure lowering and 
heat conduction in the first case, and due to capillarity 

in the latter. The nature of the critical heat flux for 

bottom heating in a heat pipe problem. and its depen- 
dcncc on pioccss pararnetcrs arc examined in detail. 
t;inally. for both heat pipe iand geothermal problems 
wc identify regimes, where steady-state counterflow 

may not exist. 

FORlVlULATION 

We consider the steady state, one-dimensional, 
countercurrent tlow of a single component, two-phase. 
liquid&vapor (e.g. steamPwatcr) system. As a result 
of an cstcrnally imposed heat flux q,,_ three regions 

develop [ 181: two no-flow regions (I and III in Fig. I ) 
containing mostly vapor or liquid, rcspectivciy, and 

an mtcrmediate two-phase region (II)_ where counter- 
Row occurs. In our notation, the space coordinate .Y 
increases in the direction from the liquid to the vapor. 
The system is inclined at an angle ii with respect to 
the horizontal. such that vapor is at the top when 
0 < il < 15, and at the bottom otherwise. x < 0 < 3. 

Momentum halanccs for the fluid phases arc 

described by Darcy’s law 

where the relative ~ei-l~~~lhiliti~s k,, and !c,~ dcpcnd 
on the liquid saturation. 5’. This formulation ignores 
viscous coupling. that may bc present in COLIII- 

tercurrcnt flows [2X]. The two pressures arc related 
via the capillary pressure function 

P, - P! = P<(S) = ff. J(S) 
\ Ii 

(3) 
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FIG. 1, Countercurrent flow schematic. 

where a typical representation in terms of a Leverett 
J function was introduced. 

Salient features of relative permeabilities for vapor- 

liquid systems are discussed elsewhere, following a 
percolation approach [20,22], where the roles of pore 
space geometry and topology are emphasized. The 
residual saturation values (S,,, Sv,), below which bulk 
flow of the respective phases ceases (krL, k,, vanish, 
respectively), should be noted. In the ensuing dis- 
cussion use will be made of the simple, although cru’ 
/XX, numerical expressions of Table 1. 

Table I. Typical parameter values 

S,, = 0.20 

S,, = 0.05 

I-” = 171.1 ‘C 

P,, = 15psi 

(r = 58.91 dyn cm-’ 

ri = IX.76 cm’ mol ’ 
pL = 0.9606 g crn~- ’ 
pb = 0.0006 g cm- ’ 
~L=2.824x10~‘gcm ‘s-’ 

pv= 1.260x10~~gcm~‘s~’ 

L,=3.OWm~‘K~’ 

I,,, = I.2 Wrn-’ Km’ 

k,,, = (‘!+$y 

P, = 2.24-2.75S+ 1.3s’ 

We subsequently take 

to describe pressure lowering, and use the Clausius- 
Clapeyron formula 

for phase equilibria. Mass and thermal energy bal- 
ances complete the formulation 

PL v,, +pv vv, = 0 (6) 

where all fluid properties are taken independent of P 
and T. Due to different flow behavior the three diffcr- 
ent regions (Fig. I) are examined separately. 

Region I is a no-flow. mostly vapor-occupied zone, 
where 

0 4 s < s,,, (8) 

thus k,,(S) = 0, V,,, = 0 and, from equation (6), 
Vv, = 0. At the residual value SLI, bulk liquid in the 

pore space becomes disconnected, and bulk flow 
ceases. The liquid being strongly wetting, keeps 
hydraulic continuity in the form of thin film flow, 
however, even for S < S,,,. These rates are quite low 
and will not be considered here. Thus, the pressure of 
the vapor phase is hydrostatic and the temperature 
distribution linear 

P, = P, - pv ,9x sin 0 (9) 



175x C. SATK u ul. 

T = T, + yh.‘/ll, (10) 

where P,. r, are constants. A saturation profile results 

dS G(5. S) 

d< - d.l 
F( 7. S) d s 

(19) 

where the dimensionless group h = W, /RT,,‘k para- 
metrizcs Kelvin cffccts. For media ol‘practical intcrcst 

(/I <i I). the liquid is at loti saturation (J(S) z0 1) in 
most of rcpion I. and exists in :I pendular state whcrc 
ctfccts of thin films are predominant. Rcccnt works 

[24.X] have elucidated the capillary pressure satu- 
ration relationship in this regime [or non-condensing 
Ilow~ In this paper. such etrccts mz not considcrcd. 

The cxtcnt (.\-,) o1‘thc vapor LOIIL’ I is dcmarcatcd by 
selling S = S, , in equation ( I I). For h << 1. one may 
Curther approximate 

P,,,(T,+q,,.u,/i,) = P, -pv,y.u, sin 0 (12) 

which is thccondition for vapor saturation. and dcter- 
mints the boundary of the two regions I. II. The 

sharp saturation rise to the residual WILIC S,, IXII 

the boundary (whore the logarithm in equation (I I) 

becomes or order h) should bc noted. 
Likewise. region III is ;I no-flow. mostly liquid- 

occupied Lone, whcrc 

I -s,, < s< I (1-J) 

thus. I\+(S) = 0. I’, , = 0, and, liom equation (7). 
I ‘, , = 0. Pressure and temperature profiles arc lineal 

P, = P,,, -p, J/.Y sin 0 (14) 

T = T,,, + cf,,x:iq,, (15) 

with P,,,. T,,, appropriate constants. Howcvcr. in con- 

trast to region I. where ;I saturation profile exists due 
to the liquid wetting, the bulk of region 111 (IIib in 
Fig. 1) is at S = 1. Saturation changes arc confined 
within ;I narrow domain (Illa). the boundary ofuhich 

(.Y ;) is the solution of I’, = 0 

P,,,(T,,, +q,,.ul/i,,,) = P,,, -p, gs, sin fl. (16) 

To the Icft lies boundar) _x’. obtained by taking 

s = I ~ .Y,, 

t IT J(1 -S,,) (17) 
, Ii 

and whcrc Kelvin effects were ncglcctcd without loss. 

The region OP two-phase. countercurrent flow is the 
most interesting. Saturation and temperature profiles 
arc described by two coupled equations by combining 
equations (l)--(7). After considcrablc algebra. the fol- 
lowing is obtained : 

dr I{(?, S) 
d< = F(7. S) 

(18) 

where dimensionless notation has been used. with ; 
denoting distance normali/cd b> 0, I. (/i)g&. and T 

denoting tcmpcraturc normalized by ;L rcfcrcncc tcm- 

peraturc T,,. The functions H. I:. and G arc :li\:cn 

rcspcctivcly by 

H=/\,,[(l+I,R,,A)R,,+sin(I/\,,(hR,,,,3~R,R,)I 

+hX,,/jR,,R,,.,l (20) 

and 

G = k,, sin OR, + KR,, R,, :2 +sin Ilk,vKR,,, “z 
T. I 

‘4 
+/i/i,\ sin OR, + KR,,R,, 

J 
7? (22) 

Variable .4 is ;I vapor prcssure normaliacd by the 
saturation pressure at T,, and includes Kelvin cfYccts 

4 = cxp [Kil - ;&M(S)). (23) 

All dimensionless groups arc dctincd in the Nomcncla- 
turc and they are functions of the fluid and rock 
propcrtics. with the exception 01 

(24) 

which is a mcasurc of the imposed heat flux, and ih 
simply related to the parameters ~1 or r defined in ref. 
[ 181 or rec. [I 61, rcspcctively 

R,, RI, 4, r/l, 
C’, = 

R,,, = h L, gAf)i)\ 
(25) 

The above constitutes an initial \aluc problem to be 
solved subject to appropriate initial conditions. The 
latter vary according to the application. For the heat 
pipe problem [ 181 we take 

1, 
T= 

T,, : 
.Y = s, , at < = < , (26) 

whcrc T, = T,,+y,.v,i;.,. the rcrcruncc temperature T,, 
corresponds to the (dry) end 01‘ the vapor zone, and 

the integration is in the direction of decreasing <. For 
the geothermal problem [16] the initial condition is 

r == I : s = I at Q = 0. (27) 

The rcfcrcnce temperature T,, corresponds to the 
boundary of regions Illa Illb. and the integration 
is in the direction ofincrcasinp <. Forward integration 
ofcquations (IX) and (19) subject to equation (26) ot 
(17) uniquely dctcrmines saturation and temperature 
profiles in the two applications. 
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For future reference the expression for the dimen- 
sionless vapor flow velocity Vv.,, normalized by 

kApg/tcv, is also derived 

k,,k,, sin OR, -bR,A + KR,R, $ 

Vv, -L __~~~~ 
F(7. S) 

I, 

(28) 

It must be remarked that, for all practical purposes 

(b << I), the magnitude, but not the sign, of the angle 
0 can be scaled out in equations (IX), (19), and (28), 

by a simple resealing of the space variable 5 by lsin 01 
and of the heat flux term R, (or w) by l/lsin 191. Thus, 

it only suffices to study the generic cases 0 = a/2,3nj2. 
Contrasted to the above, and excluding field-scale 

numerical simulators. present models are quite simple. 

We refer to Udell [IX, 191, for the heat pipe problem 
and to Schubert and Straus [I& for the geothermal 
problem. As shown below, these models arise as limit- 
ing cases of the present formulation. To facilitate the 
presentation, however. the two cases will be examined 
separately. We proceed by applying equations (12)- 
(28) to the two problems. 

HEAT PIPE PROBLEM 

In the context of the heat pipe problem we inves- 
tigate Kelvin and heat conduction effects, and will 
explore the critical heat flux curve. For this purpose, 
we will frequently refer to the model in refs. [18, 191, 
which represents a particular limit of the present 
model. We shall denote by 0, C, and Y the tempera- 

ture, saturation, and vapor flux, respectively, cor- 
responding to refs. [I& 191. In our notation, that 
analysis is tantamount to taking in equations (18)- 
(28) the limits b << 1, and KR, >> 1 with R,/R, fixed, 
the latler condition corresponding to negligible heat 

conduction. Indeed, at these limits, the vapor Row 
rate. equation (28), reduces to 

- V”, +Y=w (29) 

and the saturation equation (I 9) becomes uncoupled 
from temperature 

(30) 

The above two limits place constraints on the validity 
of previous results. Clearly, the condition for neg- 
ligible Kelvin effects, h << I, is generally well satisfied 
for most porous media of practical interest (e.g. per- 

meabilities exceeding 0( IO- ” ml)). Neglecting heat 
conduction, on the other hand, requires KR,,, >> 1 at 
fixed RJR,,,, a significantly tighter restriction (e.g. 
k >> O(10 ’ 3 m’) for the experiment in ref. II 81). As 
shown in subsequent sections, substantial changes 
may result when this condition is not satisfied. We 
proceed, first, by examining the effects of the two 
constraints on saturation and temperature profiles. 

Boundmy layer analysis 

As a consequence of conditions h << 1, KR, >> 1 

two boundary layers arise at the ends of region II. 
This is evident from expression (29) which dictates a 

step change in the vapor flux, thus infinitely large 
evaporation-condensation rates, at the boundaries. 
In actuality, the vapor flux vanishes smoothly at the 
two boundaries (where the two relative ~ermeabili~ies 

also vanish). This feature is retained in the present 
formulation, as can be seen from an expansion of the 
full expression (28) 

V \‘r _ ’ (31) 

The singular behavior of expression (31) in the respec- 
tive limits (h << 1. KR, >> 1) is apparent. We shall 
analyze the solution in the two boundary regions. Near 
the dry zone the more general case h << 1, finite KR,,, 

is considered. 
(i) Cusr h << I. ,finite KR,, 

Here, a boundary layer in the vapor flux develops 

at the evaporating end (near S,,). The outer solution 

outside this layer (superscript (0)) is obtained by 
neglecting Kelvin effects in equations (18). (19). and 

(28) 

Near S,,, the saturation (although not the tem- 

perature) gradient diverges, thus a change of scales is 
needed. By taking the typical expansion, 
k rL N L(S-S,,)“, where L > 0 is constant and n > I, 
we rescale 

s = SLr +&o(Z) (35) 

<=<,-h”r (36) 

with Y, w > 0 to be determined. Substitution into the 
full equations (18) and (19), subsequent expansion 
and use of the dominant balance [26] results in 

x= ,+! 
n . 

(W 

In this asymptotic technique the set of exponents is 
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uniquely determined such that the singular behavior 
of the outer sohition is eliminated. It follows that the 
(evaporation) boundary layer is of the order b’+ I”‘. 
Furthermore. the saturation profile within the layer 
can be constructed by substitution and integration 

The corresponding vapor flux in the boundary layer 
is obtained from equation (28) by substitution of 

equations (35) and (36) 

vv, = G:(L) 
I-tuJ ” (40) 

This expression correctly predicts that inside the 
boundary layer, Vv, varies smoothly, by vanishing at 

the one end (0 = 0) and by asymptotically approach- 
ing the outer value, Vv((S,,,), at the other ((T + ~1) 
(Fig. 2). Likewise. the dimensionless evaporation rate 
ti = d V,,/d< can be evaluated 

where C. e, and ,f’ are process constants (Appendix). 
A normalized plot is shown in Fig. 2. It is noted that 
in this approximation (h CC I) all evaporation takes 

place within the boundary layer, ril increasing to a 
maximum value, before rapidly decaying to zero at 
the other end of the boundary layer (1 --t +x-). As 
shown in equation (41). the local rates intensify for 

smaller values of b. for example when the permeability 
increases, such that. however, the total evaporation 

rate remains finite 

Of course. the latter equals the jump in the outer value 
Vti(S,,). which is discontinuous at S, /. 

The above analysis shows that in most practical 

casts (h << I) the evaporation region is a thin Iaycr 01 
order h ’ i ’ ” at the interface between dry and CWO- 

phase zones. Outside this layer in region II, Kelvin 

effects are insignificant, and the process is well 
described by the outer solutions (18), (32). and (34). 
In particular, an analysis of the latter equation shows 

that the vapor fiux magnitude 1 V!,J+‘l continuously 

decreases. as S incrcascs. suggesting that condensation 
occurs over the cntirc two-phase zone. and not strictly 
at the end, as normally assumed. Of course. local 

condensation rates depend on the value of KR,,,. For 
large values of the latter, as implicitly taken in r&s. 
[I& 191, condensation is restricted on a boundary 
layer at the intcrfacc between liquid and two-phase 

zones. This boundary layer is due to heat conduction 

alone. 
(ii) Case h << I. KR,,, >> I. Rh; R,,, firCk> 

In this no-conduction limit. the outer solutions (0. 
C. and Y) are given by expressions (39) and (30) and 

by 

Under the tacit assumption h cc (i = I,IKR,,,, the pre- 
vious analysis holds. and only the boundary layer near 
I -S,+ needs to bc considered. Now. however, the 

temperature gradient also divcrgcs. To proceed, we 

2- -08 

; 0.7 

FIG. 2. Boundary layer profiles : normalized vapor flux and evaporation rate 
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first note that, to first-order, the boundary tem- 

perature at tz is given by the outer solution by com- 
bination of equations (33) and (43) and integration 

(44) 

Here A = exp [K( I- 1 /@)I and it was implied that the 
denominator does not vanish (but see also below). 

Next. we rescale saturation, spatial distance and tcm- 
perature as before 

S = 1 -s,,, -;SZcr(z) (45) 

i-t2 = S”Z (46) 

0 = o>+ fYr/(Z) (47) 

to obtain with the use of dominant balance 

1 
a=y=- 

?ll 

ti= 1-t’. 
rrl 

(4% 

where m is the exponent in the permeability expansion 
k rV - M( I -S-S,,)“‘. The resealed saturation sat- 
isfies the equation 

da WC 
-=-_ -~ 
d= J’ ( 1 - S,,) [ I + MGa”‘] 

(50) 

where G = A -JO;. An analysis similar to the previous 
one also applies, and identical results can be reached 
regarding condensation rates. For example. the vapor 
flux inside the boundary layer has the form 

(0 

vv, = - i_“’ (51) 

I+, 

which correctly predicts that Vvr vanishes at 1 -& 

(CT = 0), while it approaches the asymptotic value --co 
in the outer limit (r~ + 8~). We omit further details 

and only mention that at such conditions, vapor con- 
densation is restricted in a boundary layer of width 
a’+ ’ “‘at the end of the two-phase zone. The boundary 
location and the boundary temperature are accurately 
approximated at large KR, from the outer solutions. 
The temperature drop across the two-phase region 
is given by equation (44), which reflects solely the 
interaction between capillarity and phase change. 

We conclude that in general cases of practical inter- 
est (h << 1) evaporation occurs only within a boundary 
layer in the vicinity of the vapor zone, outside of which 
vapor pressure lowering due to Kelvin effects can be 
neglected. By contrast, condensation is driven by heat 
conduction and. unless 6 = IjKR,, cc 1, it may not be 
neglected in the bulk of the two-phase zone. In several 
practical applications, KR,, is not necessarily large, 

thus previous results [ 177191 may be inapplicable. The 
effect is most significant in the estimation of the critical 

heat flux as discussed in the next section. 

Critical heat ,&.Y 
Critical heat flux was defined as the minimum flux 

above which dry-out occurs and a two-phase zone 
exists [I 7, 191. At large values of k (or KR,,) the critical 

flux can be readily obtained from equation (30) 

(see also ref. [19]), a value largely independent of 

process parameters. In the more general case, 
however, a more elaborate approach is required. 

To proceed, the problem described by equations 

(8)-(27) was solved using a numerical scheme based 

on stiff ODE IMSL solvers, the integration starting 

from region 1 and consecutively marching through 
regions II and III. Standard runs were carried out at 
the conditions of Table 1. Subsequently, a systematic 

numerical study was undertaken. As anticipated, 
results consistent with refs. [I& 191 were obtained in 

the limit of large KR,. For example, in the more 
interesting case of bottom heating [l9], critical 

heat flux values (u,, were found. such that for 
w/(-sin 0) > o,,. a two-phase zone exists of a length 

that decreases as w increases. This behavior was thor- 
oughly analyzed previously [19]. Unexplored in past 

investigations, however, were the effects of k and the 
nature of the solution for w < Q,,. While at large k 

(or KR,,), co,., approaches the asymptote (52), it was 
also found that it slowly increases with decreasing k. 

and it rapidly diverges when a critical permeability 
value k, is approached (Fig. 3). This singular behavior 

was verified for a host of parameter values, the stan- 
dard case yielding the estimate k, = 144 md. well 

within the range of natural reservoir rocks. 
This interesting feature has not been noted before. 

For given conditions. a critical value k, can be demar- 
cated such that steady-state solutions are possible for 
k > k,, in which case a minimum heat flux is required 

(region A in Fig. 5). The magnitude of the latter is not 
constant as previously held, although it approaches at 
large k the asymptote (52). In the opposite case, 
o < w,, or k < k,, saturation and temperature profiles 
are ill-behaved, in a manner to be specified below, 
and the existence of steady-state solutions must be 
questioned. 

To analyze the critical heat flux at bottom heating, 

the nature of the solution for o < :u,, must be exam- 

ined. We consider a representative example with 
k = 10 ” m2 and parameter values &, = Svr = 0. 
Here (k > k,,) the critical heat flux is w,, = 0.45. sig- 
nificantly larger than 0.306348 obtained from the esti- 
mate (52). Typical (r,S) trajectories are shown in 
Figs. 4-6 for the values (~1 = 0.1. 0.4, and 0.5, respec- 
tively. Also plotted are the level curves when the 
numerator in equation (19) vanishes, G(T. S) = 0. a 
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103 = 1 
: I: 1 : > 

100 1 

kb 
IO-’ ?I-Y& 

102 
L 

10’ 

FIG;. 3. Critica! heat tlux as a function ol‘pcrmeability for bottom heating 

condition necessary for the change of slope in the 

(5. S) trajectory. 
The first cast (Fig. 4) is characteristic of one kind 

of ill-condition, namely that the domain G > 0 is dis- 
connected and does not extend over the entire satu- 
ration interval. As a result. the solution trajectory 
changes slope at some point (A in Fig. 4), and further 
penetration into the two-phase region leads to pro- 

grcssively higher steam saturation and unphysically 

low temperatures. Previous investigators [ 17, I93 sug- 

gested that a two-phase zone of’infinitc’ length would 

develop under such conditions. While it is true that 

the penetration depth for a given saturation is sig- 
nificantly higher and in fact it should increase even 
more as KR,,, increases (both the trajectory and the 
C = 0 level curve become steopcr in the latter case). 

unrealistically low temperatures and vapor pressures 
are eventually reached and the two-phase zone ter- 
minates at non-physical values. We argue against the 

existence of a steady state under such conditions. 

1.6 
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s 

FIG. 4. Temperature \s saturation solution trajectories for bottom heating and (?I = 0.1 : the dashed curves 
correspond to G = 0. 
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FIG. 5. Temperature vs saturation solution trajectories for bottom heating and w = 0.4 : the dashed curve 
corresponds to G = 0. 

The second case (Fig. 5) is characteristic of a differ- 
ent kind of ill-condition. Although the domain G > 0 
spans the entire saturation interval (0, I), the value 
of Q is not high enough, thus the (t,S) trajectory 
intersects the G = 0 curve before it reaches the end of 
the two-phase zone. This condition is entirely due 

to the finite value in KR,, the no-conduction model 
predicting no pathological behavior for 

(u > 0.306348. as pointed out above. At the point of 
intersection A, the saturation profile has a turning 
point and the ill-condition of the previous case is 

encountered. On the other hand, for sufficiently large 
values of w, the two curves are at large enough 
distance, such that the solution trajectory terminates 
at the end of the two-phase zone before intersection, 
and a true heat pipe is established (Fig. 6). Smaller 

values in k lead to increasingly larger critical heat flux 
values and, at least within a certain range of k away 
from k,, the above interpretation of the CD_ vs k curve 
applies. 

While the departure of w,, from the asymptote (52) 
was attributed primarily to conduction. near the 
threshold region (k - kb) capillarity becomes pre- 
dominant. The condition determining w,, still remains 

the same, namely that a turning point (where G = 0) 
in the saturation profile develops. It was numerically 
observed that the latter first occurs at the end of the 
two-phase zone, where S -+ I - Svr and k,, -+ 0. Sub- 
stitution in G = 0 yields after manipulation of equa- 
tion (22) 

(UC, 1 T? i) _._~~__ ~ 
-sin 0 - KR... A 

>> 1 
, ,,, , ,. 

(53) 

Thus, while the behavior of the critical flux near the 

two threshold regions is significantly influenced by 

conduction (see expression (53)), the permeability 

threshold kb is solely dictated by capillarity. The ana- 
lytical expression (56) contains all features observed 
in our numerical investigations. Thermal conductivity 
was found to have no effect on k,, although it sig- 
nificantly influences the shape and magnitude of the 
critical curve. A sensitivity, generally weak, with 
respect to the residual saturations (which lead to a 
decrease of the overall permeabilities in the model of 

where w,, was assumed large. Indeed, as k approaches 
k,, w,, becomes infinitely large, which, in view of the 
finite value of KR,, must be attributed to the van- 

ishing of the vapor pressure A>. An estimate of the 
vapor pressure at the large w limit can be obtained 
from equations (18) and (19) 

KA dz dJ k,,_ 
R,,p=pppp 

z- dS dS (kc +Pk,v) 
(54) 

which can be further integrated to 

R,,(A?-A,) e 
s 

’ ‘u k,,J’(S) dS 

s,, CL+&) 
(55) 

We note that as expected, this is also the limit of 
equation (44) for the case of horizontal heating 

(sin 0 = 0). We conclude that the critical threshold k, 

can be determined by simply taking in expression (55) 

the limit Al cc 1 
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FIG. 6. Temperature vs saturation solution trajectories for bottom heating and UJ = 0.5 : the dashed curve 
corresponds to G = 0. 

Table 1). Most significant, however, are the effects of 
capillarity and the imposed pressure PO, the threshold 
value varying in proportion to the square of o/P,. 

While substantial changes in (T mainly require changes 
in the fluid chemistry, large variations in PO can bc 
readily accomplished. Therefore. a wide variation in k,, 

is possible. For the typical conditions of laboratory 
experiments with heat pipes, relatively high thresholds 
should be expected. By contrast, very small k, values 

(of the order of 10~ ” m’) would be obtained for 
geothermal systems. The agreement between numeri- 
cal and analytical results is excellent. 

For completeness, and after additional algebra, an 
estimate of the critical curve near /it, may also be 

derived 

(,I,, (const) 

-sin 0 KR,,(k-k,)(ln IX--k,\)” 
(57) 

The latter contains, through R,,,. observed effects of 
the thermal conductivity. i. As previously remarked. 

conductivity does not affect the threshold value. 
although it intlucnces the shape of the critical curve. 

Although the above pertains to bottom heating. 
essentially similar results were numerically obtained 
for the case of top heating, as well. As expected, no 
constraint in the process parameters was found for 
sufficiently large k. At smaller permeability values. 
however. a sensitivity similar to the case of bottom 
heating was detected and a similar (although not 
as sharp) threshold value, k,, was identified. Now, 
steady states are possible for any heat flux value, if 
/i > k,. and for sufficiently low heat flux values, 

(11 < (I),, if k < k, (region A in Fig. 7). When these 
conditions are not satisfied (region B in Fig. 7). a 
steady-state counterflow may not be sustained. Sen- 

sitivity studies revealed features similar to the case of 
bottom heating. Capillarity and imposed pressure P,, 
were found to be the most important variables. In fact. 
the two thresholds k, and k, were found to practically 
coincide. Likewise, the onset of critical behavior 
coincides with unphysically low temperatures, first 
encountered at the end of the two-phase region. In 
the limit I << to < w,,. it can be easily shown that the 
previous analysis, notably results (56) and (57), apply. 
To provide a better pictorial, the composite of co,, 
near the threshold region was constructed (Fig. 8). 
For the case of top heating (0 < 0 < r-r), steady-state 
solutions are possible within the ‘tunnel’ at the front- 
Icft, the cross-section ofwhich expands to an infinitely 
large value when k > k,. Conversely, for bottom heat- 
ing (rt < II < 2n). steady states can be sustained only 
outside the ‘tunnel’ at the back-right, the cross-sec- 
tion of which also diverges when k < k,. 

We shall conclude this section by providing an altcr- 
native physical interpretation of the threshold con- 
dition (57). For this, we first consider the horizontal 
case, (I = 0, which demarcates the boundary between 
top and bottom heating. For negligible Kelvin and 
other secondary effects. the two-phase flow region 
starts when the vapor becomes saturated, P, = P,,. 
Counterflow in this region is possible only bccausc 
of capillarity. In fact. the changes in vapor pressure 
and capillary pressure are interrelated 
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FIG. 7. Critical heat flux as a function of permeability for top heating 

As long as capillarity is small, the vapor pressure drop 

across the region 

Pv = P,, - (59) 

is not large and P, > 0. Problems arise when the per- 
meability is low, such that capillarity is large enough 
for the right-hand side above to become negative. 

It is straightforward to show that the onset of this 
condition is at the above threshold, k,. Below this 
value, capillarity is large, thus negative values for P, 

result. Clearly. kh (or k,) also denotes the lowest per- 
meability value below which steady-state, horizontal 
counterflow cannot be sustained. 

When the medium is inclined, gravity opposes or 

supplements capillarity, depending on whether the 
vapor overlies or underlies the liquid. For instance, 
the expression equivalent to equation (59) is 

(60) 

where 

(61) 

When heating is from the top, capillary pressure is 
counterbalanced by adverse gravity effects, and a two- 
phase region may exist even fork < k,, provided that 
the heat flux is small enough. One may recall that the 
extent of the two-phase zone increases as the heat flux 
decreases. Opposite considerations apply for the case 
of bottom heating. At least near k,, gravity would 

supplement capillarity in increasing pressure drops. 
with a contribution roughly proportional to the extent 
of the two-phase zone. At low w < w,,, the latter is of 

large enough extent, thus a steady state cannot be 

sustained. 
One concludes that consideration of conduction 

and lower permeability values in the heat pipe prob- 

Icm leads to unexpected, and non-trivial corrections, 
particularly for the case of bottom heating. The rel- 
evance of the threshold k, to heat pipe problems which 
place emphasis on capillarity cannot be discounted. 

A measure of the latter is the parameter R,. For values 
of R, of order 1 or less, the obtained k, value is of the 
same order with the medium permeability (compare 

equation (56)), and the problems analyzed above are 
likely to be encountered in such heat pipes. This is in 
contrast to geothermal problems, where capillarity is 
usually negligible (large values of R,,). 

GEOTHERMAL PROBLEM 

The second part of this paper addresses the geo- 
thermal version of the vapor-liquid counterflow, 
specifically the problem considered by Martin et al. 

[I 51 and Schubert and Straus [ 161. Here 0 < 0 < 71, 
but the heating is from the bottom, thus. in our 

notation, the imposed temperature gradient and heat 
flux are negative (in the direction from the liquid to 
the vapor). We shall take reference values cor- 
responding to the liquid two-phase zone interface, 
where for simplicity .Svr = 0 will be assumed. lnte- 
gration proceeds in the positive t-direction. from the 
liquid towards the vapor. The condition derived in 
ref. [I61 is also recalled that the underlying liquid bc 



FIG. 8. Composite schematic of critical heat flux curve for both top and bottom heating 

subcooled. hence the tcmperaturc gradient or the heat 

flux may not exceed an upper limit. In our notation 
one obtains the equivalent condition 

(62) 

As previously discussed. the geothermal version of the 
counterflow formulation (18)-(22) is obtained at the 

following (no-capillary) limit in the absence of Kelvin 
cffccts 

KR,, >> 1. (63) 

With reference conditions corresponding to the top of 
the liquid zone, the above condition reads as follows : 

Consistent with rcfs. [I 5, 161, conditions (63) or (64) 
imply that capillarity is of secondary importance and 
sharply differentiate geothermal and heat pipe prob- 
lems. To proceed we recast equations ( I &(22) in the 
form 

where we denoted c = I/KR, and the expression for 
G, equation (22), has been rcwrittcn as 

.A 
G’(S, s) = k,, R, + KR,,,w 

z’ 
+ KR,, f4- k,, 

T2 1 

+ fikv R, + KR,,,tu ” 1 52 (67) 
As in the heat pipe problem it is convenient to charac- 
tcri/;c the solution of the problem using solution tra- 

jcctories (Figs. 9 and IO). Of particular importance in 
this respect is the critical curve whet-c Gtt, S) = 0 (Fig. 
9). In general. G and KR,,,tu arc of O(I) or less (com- 
pare with expression (62)). Thus. in the limit J: c I. 
solution trajectories (5, s) have constant tcniporaturc 

(dz:dS z 0). in regions where G is not small, and 
closely follow the G = 0 curve, otherwise (compare 
with equation (653, Fig. 9). In the region of constant 
tcmpcrature. the saturation changes rapidly o\cr an 
interval of 0( I) in length (Fig. IO) (which, ah recalled. 
cxpresscs a balance between gravity and capillarity in 
chc present notation). It is in this region (taken as 
a sharp intcrfacc in previous works [15, I(,]). whcrc 
capillarity influences the saturation profile. 

Significant tempcraturc changes start occurring 
when the solution trajectory approaches the curve 
G(z. S) = 0. For the conditions of Fig. 9, the latter 
interval (AB in Fig. 9) is the vapor-dominated rcgimc 
analyzed by Schubert and Straus [16] for a simpler 
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Frc;. 9. Temperature vs saturation solution trajectories for the geothermal problem and B = 0.0265275 : the 
dashed curve corresponds to G = 0. 
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FIG. 10. Saturation vs distance for the geothermal problem and G = 0.0265275. 

model involving straight-line relative permeabilities. 
As is apparent from equation (66) in this domain, the 
saturation gradient is very small (G <c 1) thus, the 
spatial extent of the region is quite large (Fig. 10). In 
the limit E cc 1, the region commences at saturation 
S* (approximately at point A) satisfying G(1, S*) = 0, 
a condition previously derived although in a different 
notation [ 161. At larger values of a, however, capillarity 
can become important and must be also considered 

(Fig. 11). Here, although ultimately attracted to the 

curve G(z, S) = 0, the solution trajectory shows sub- 
stantial temperature variation before the vapor-domi- 
nated region is entered. 

With an approximation that rapidly improves as i: 
diminishes, the previous analysis [16] describes the 
behavior of steam-water counterflow in the geo- 
thermal context with excellent accuracy. Con- 
siderations similar to ref. [ 161 were also advanced by 
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F;Ic;. I I. Temperature vs saturation solution trajectories for the geothermal problem and E = 0.083887h : 
the dashed curve corresponds to G = 0. 

Martin cf (I/. in an earlier publication [ 1.51. While also 
identifying the vapor-dominated regime. they have 

additionally proposed the cxistencc of liquid-domi- 
nated regions. The present formulation readily yields 

such solutions as well. For this. it is required that the 

equation G(I. S*j = 0 admits two solutions. a con- 
dition that can be met at higher values in w. 

At such conditions, the (t. S) diagram is divided 

into three regions (two far regions with G < 0 and a 
middle one with G > 0) by the two branches of the 
curve G = 0 (Fig. 12). The theory proposed earlier 
1151 can then be rcphrascd as follows in the present 

context : vapor- or liquid-dominated rcgimcs com- 
mence at point A or B, respectively. where 

G( I. S*) = 0, and they subsequently follow the 
respcctivc branches of G(7.S) = 0 (paths AV. BL. 
rcspcctivcly). Such behavior appears consistent with 
equations (65) and (66) in the limit i: << 1. but it is 
doubtful that it actually materializes at steady stale. 

for the following masons. 
By definition. a solution trajectory must originate 

from the top of the liquid zone (point C. where 7 = I. 
S = I and G < 0). other starting conditions being 
impossible in a steady-state countcrflow system. This 
trajectory has a slightly negative slope and approaches 
the C; = 0 branch to which it rapidly becomes parallel 
(dashed-line path CD in Fig. 12). Somewhat anal- 
ogous to the heat pipe problem. the solution trajectory 
crosses over to the middle region (G > 0). acquires 
positive slope and parallels the branch G = 0 from 
the other side (note that the two curves practically 
coincide in Fig. 12). The immediate implication IS that 
the trajectory suggested earlier (path BL) may not be 
acceptable. 

While being different than previously proposed 

(path BL), the other alternative solution (path CD) 
is not acceptable either. An inspection of equation 
(66) readily reveals that < must decrease along path 

CD, contradicting the requirement that, by conven- 
tion. 5 increases in the direction from the ‘liquid’ to the 

‘vapor’. The other alternative, namely the trajectory 
extending from point C in the direction opposite to 
B, is also rejected as it leads to saturation values larger 
than one. It becomes evident that under such high 
heat flux conditions. a liquid-dominated regime 01 
this type is not realistic. while the associated vapor- 
dominated regime is also never reached, certainly not 

when the starting point is the top of the liquid Lone. 
as assumed throughout. One is led to conjecture that 
fat, such cases, which require that the heat flux exceed 
a certain value. steady-state solutions arc not possible. 
The limiting heat flux is easily determined to be the 
Iupper bound (62), which, as recalled, sets the necess- 

ary condition for the underlying liquid to be 
subcooled. This limitation, inherent to any such prob- 
icm. scrvcs to reinforce the above conclusion. 

A final remark is also appropriate regarding the 
analysis presented by Bau and Torrance [ 171. Thcsc 
authors examined a configuration with I) = 3n:2 and 
bottom heating (steam at the bottom, temperature 
gradient in the direction from the vapor to the liquid 
zone). a problem analyzed in the heat pipe section. In 
addition to conduction. however. they also neglected 
capillarity. Because of the latter, some similarities with 
the geothermal problem may exist. In our formu- 
lation. their analysis corresponds to the conditions 
KR, >> 1, KR,, >> 1, By simple rearrangement, equa- 
tions ( I X)~~(X?) read for this problem 
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dJ 

(68) 

dS G(z, S) dS 

d5 k,,k,v dJ 

where E = I /KR,, and the function G(7, S) here sim- 

plifies to 

G(7, S) = (k,,. +Bk,,)w-k,,k,,. (70) 

It readily follows that, despite the small capillary 
effects, the problem is of the same nature as that 

of the heat pipe thoroughly analyzed before. Thus, 
identical conclusions must be reached regarding solu- 
tion trajectories and the critical heat flux value. Q,,, 
which is the necessary lower limit for the existence 
of a steady-state. steam-water counterflow. Under 
the implied assumption of negligible conduction, 
KR,,, zo I, this critical value coincides with the asymp- 
tote (52). 

CONCLUSIONS 

In this paper we have attempted to unify the 
description of a diverse set of problems arising in 

heat pipe and geothermal contexts that contain the 
common process of steady-state, vapor-liquid coun- 
terflow. The formalism introduced encompasses sev- 
eral previous studies, which arise as special cases at 
various limits. In particular, a quantitative assessment 
of the importance of gravity, capillarity, phase equi- 
libria. heat conduction and Kelvin effects becomes 
possible. A similar approach was also recently 

implemented for the case of vapor-liquid concurrent 

flow [27]. 
In the context of the heat pipe problem, it was 

shown that Kelvin effects are of significance only over 
a narrow boundary layer at the vapor-two-phase 
boundary, and are otherwise negligible in the coun- 

terflow region. Heat conduction was found to influ- 
ence saturation and temperature profiles near the 
other end of the two-phase region. It was conjectured 
that for the case of bottom heating, steady-state coun- 
terflow is not possible when the heat flux is below a 
critical value. Contrary to previous results, the latter 

is constant only in the limit of large permeability. A 
permeability threshold value k, was identified, such 
that no steady-state counterflow can exist for media 

of lower permeability. The threshold reflects capillary 
effects and is mainly a function of the imposed press- 
ure. 

The geothermal problem was similarly analyzed. 

The results of Schubert and Straus [16]. where capil- 
Iarity is neglected, were recovered as a limiting case 
of the present formulation. The same limit is also 
applicable for the cases discussed by Martin rt (11. [ 151. 
However, the liquid-dominated regime of the latter 
was found to lead to non-physical predictions, and it 
was suggested that such a steady state may not be 

reached, at lcast not for homogeneous reservoirs. It is 
hoped that the present analysis clarifies several of the 
issues involved in steady-state, vaporliquid coun- 
terflow. and that it may be useful for further studies 
in this area. 
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APPENDIX 

The dimensionless constants (‘. (‘. / are obtained by a 
straightforward analysis. WC obtain 

/~R,,~l,k,v(%) 
(’ z 

1 +h,,(.L)KR,,, 
‘-I I 

(1) 

5; 

R, + KR,, R,, ‘-’ ’ 
r; 

” = R,,A ,J’(S,,) 
(II) 

rzf, 
/ = - ,i J’(S,,k (111) 

where A, and T, pertain to conditions at < ,. b’or typlcal 

parameter values [IX] and h = IO ” m’, WC obtain the csti- 
mates 

c’ = 1.469 x IO ‘3 (’ == X0.5169. f = 3.09x1 x IO”, 

UNE ETUDE DU CONTRECOURANT PERMANENT VAPEUR-EAU LIQUIDE DANS 
LES MILIEUX POREUX 

R&sum&Le contrecourant vapeur-liquide dans les milieux poreux apparait dans les mkcanismes de 
caloducs, rtcup&ation d’huile brute et les systtmes gCothermiques. Alors que les ttudes prtcidentes 
analysaient ces mkcanismes stpartment, on prisente ici une description unique. L’analyse in&t la capil- 
larite, la conduction de chaleur et les effets de Kelvin. L’importance de chaque terme est examinie dans 
les diffkrentes applications. On trouve que le flux de chaleur critique dans un caloduc n’est pas constant 
mais qu’il augmente quand la permtabilitk diminue. On identifie un seuil de permtabilitk au dessous duquel 
des &tats permanents ne peuvent exister. Des conclusions sont tirkes concernant les syst&mes gtothermiques 

dominis par le liquide. 
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UNTERSUCHUNG DER STATIONAREN GEGENSTROMUNG VON 
DAMPFFORMIGEM UND FLUSSIGEM WASSER IN EINEM PORijSEN MEDIUM 

Zusammenfassung-Die Gegenstromung von Dampf und Fliissigkeit in porosen Medien kommt beispiels- 
weise in Warmerohren, bei der Olriickgewinnung und in geothermischen Systemen var. Im Gegensatz zu 
friiheren Untersuchungen. in denen diese Prozesse getrennt analysiert worden sind. wird in der vorliegen- 
den Arbeit eine einheitliche Beschreibung vorgestellt. Dabei w&den die Kapillarwirkung, die Warme- 
leitung sowie Kelvin-Effekte beriicksichtigt. Die Bedeutsamkeit der einzelnen Terme bei den einzelnen 
Anwendungen wird untersucht. Es ergibt sich, dal.3 die kritische Warmestromdichte in einem Warmerohr 
nicht konstant ist, sondern mit abnehmcnder Permeabilitat zunimmt. Es wird such ein Schwellenwert 
fiir die Permeabilitat ermittelt. unterhalb dem stationare Zustande nicht moglich sind. Entsprechende 

SchluBfolgerungen ergeben sich fur fliissigkeitsgesteuerte geothermische Systetne. 

HCCJIEAOBAHHE CTAHAOHAPHOFO I-IPOTMBOTOKA I-IAPA H BOAbI B I-IOPMCTbIX 
CPEJIAX 

hTawllpoTHB0~0~ napa H *H~OCTH B ~OPHCT~~X Cpenax 803HHKaeT B Tennomx TpyBax npH 

pWeHepaWiH MaCna,a TaKXCe B reOTepME3,lbHbIX CHCTeMaX. B OTnH'iHe OT IIpC.AbIjQWHX EiCCneAOBaHHii, 
aHaJIH3Hpyr0WiX 31~ npoue~cb~ no oTaenbH0mi,B naHHOii CTaTbe npenCTaBneH0 o6o6uaeHHoe orma- 

HHC. AHaiTH3 y'iHTbIBaeT KalIHJlJIRpH0CTb,TelI.lIOnpOBOrvlOOCTb H 3@#SKT KenbBHHa. PaCCMaTpHBaeTCl 

3HaYeme Kamoro 83 3~~x *KTOB B pa3nHwbtx npH.nomeHHnx. Cnenan saxHbG BUBOLL 0 TOM,STO 

KpHTHW2CKBi-i TeILllOBOii IIOTOK B Te"J,OBOti Tpy6e He RBnReTCII IlOCTOKHHbIM,a YBenHqHBaeTCK C yMeHb- 

UleHHeM tlpOHHUaeMOCTH.OIIpe~eneHa IlOpOrOBaK lTpOHHUaeMOCTb,HHXZZ KOTOpOii CTaUFfOHapHbIe COC- 

TOKHHR MOl'yT He CyWCTBOBaTb.C~enaHbl TaKxe 3aKJIH)YeHSiK OTHOCHTenbHO reOTepMaJlbHbIX CUCTeM, 

BKOTOpblXAOMHHUpyeTX0iAKOCTb. 


