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Abstract— Vapor- liquid counterflow in porous media arises in processes such as heat pipes, o1l recovery

and geothermal systems. While previous studies analyzed these processes separately, this paper presents a

unified description. The analysis includes capillarity, heat conduction, and Kelvin effects. The importance

of each term to the various applications is examined. Significantly, it is found that the critical heat flux in

a heat pipe is not constant, but increases with decreasing permeability. A threshold permeability is also

identified, below which steady states may not exist. Related conclusions are reached regarding liquid-
dominated geothermal systems.

INTRODUCTION

THE sTEADY-state counterflow of a liquid and its vapor
in porous media arises in many processes driven by
temperature gradients. Large scale applications
involve geothermal systems [1-4], thermal oil recov-
cry [5]. and nuclear waste disposal [6, 7]. Laboratory
investigations have concentrated on porous heat pipes
[8,9], boiling [10—12] and drying [13]. All these pro-
cesses share many common aspects, principally phase
equilibria and their interplay with fluid flow, heat
transfer and capillarity.

Although a precise description of flow with vapor—
liquid equilibria in porous media is not presently
available, the conventional approach that vapor and
liquid phases obey Darcy’s law with saturation-depen-
dent permeabilities is often considered adequate.
Steady-state vapor—liquid flows in porous media have
been modeled with such methodology for several dec-
ades [14]. Recent applications to steam-water coun-
terflow include studies by Martin et a/. [15], Schubert
and Straus [16], Bau and Torrance [17] and Udell
[18,19]. The first two papers focused on geothermal
applications, thus they neglected capiliarity, but
included heat conduction. By contrast, Udell [18, 19]
considered heat pipes, in which capillarity pre-
dominates, but conduction is neglected. In the same
context, Bau and Torrance {17] presented a simplified
analysis, where both conduction and capillarity are
negligible.

While these studies have been instrumental in the
understanding of vapor-liquid counter-flow, scveral
issues are still obscure. In the context of heat pipes,
the interplay between capillarity and heat conduction
1s unresolved, particularly in regards to the critical
heat flux. The latter is appropriate to bottom heating
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and it is defined [17,19] as the minimum heat flux
value for the occurrence of dry-out, that is for & vapor
zone to exist at the heated end. The characterization
of flow regimes is incomplete for heat fluxes lower
than the critical, where present models predict an
infinite, two-phase zone of constant saturation.
Finally, the importance of Kelvin effects is unclear.
While vapor pressure lowering due to capillarity is
frequently used in such models [18. 20, 21], its prac-
tical relevance has not been assessed. In the context
of geothermal systems, the possible existence of two
flow regimes (vapor- and liquid-dominated) has long
been proposed [15]. It is not clear, however, whether
both regimes are indeed acceptable, and what are the
selection criteria.

Part of thc difficulty lies in previous approxi-
mations, which break down in vartous regions. To
alleviate this problem, a more detailed study is necess-
ary. This forms the main objective of this paper. Also
recognizing the fact that previous studies in heat pipes
and in geothermal problems are different applications
of essentially the same process (although temperature
gradients, thus flow directions, may be of opposite
sign) a common formalism should be possible. For
this reason, we consider a complete formulation that
includes capillarity, heat conduction, phase equilibria
that includes vapor pressure lowering.

The flow model is taken to be an extension of
Darcy's law with the use of relative permeabilities,
and allows for vapor pressure lowering due to Kelvin
effects. Both representations are based on the premise
of capillary control at the pore level, usually enforced
for low values of capillary and Bond numbers, and
when temperature gradients arc relatively low. The
assumption that pore wall curvature stabilizes vapor—
liquid interfaces is implicit. Such conditions are
necessary for a description in terms of saturation-
dependent relative permeabilities and capillary press-
ure functions. Precise criteria for their validity are
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K (LJ/M,)/T,R) [dimensionless]
L, latent heat [L°T 7]

it dimensionless evaporation rate
M,  molecular weight of water [Mmol™ ']
i permeability exponent [dimensionless}

p pressure [ML T

dn heat flux [MT 7]

R gas constant [L- T “mol "' K]

R. (kpy Lo}ty ki T,) [dimensionless]
R, (gno) (AT, kgAp) [dimensionless]

R, . Ap [dimensionless]

R, et [dimensionless]

R, (KL Pyo(T)p )it in To)
{dimensionless)

R, (Pvwo{T,) /K)oy [dimensionless]

R, p.ip [dimensiontess]

R, pviAp [dimensionless)

S saturation [dimensionless]

T temperature [K]

oy liguid molar volume [L*mol ™}

¥ volumetric flow rate (L T

Greck symbols
# R.iR,

NOMENCLATURE
A dimeusionless vapor pressure r temperature gradient [K L™}
fr dimensionless Kelvin group & 1/KR,, [dimensionless]
17 gravitational constant [L'T 7] 0 angle of inclination [deg]
J dimensionless capillary pressure /. therral conductivity  MLT K Y}
k permeability [L7] 7 viscosity [ML 'T ]

& dimensionless distunce
v density [M L7
Ap pi—py ML ]

a surface tension [M'T 7]

T temperature {dimensionless]

0 heat flux [dimensionless].
Subscripts

b threshold

¢ capillary

cr critical

L liquid

r refative

Vv vapor

VO  saturation

0 reference

I region |

I region 11
Il region 1.

Superscript
o outer solution.

currently under development, that parallel related
problems of bubble growth in porous media [22].

We first derive a general dimensionless represen-
tation, for steady-state, vapor—liquid counterflow.
The heat pipe and geothermal problems are sub-
sequently obtained as special cases and they arc
analyzed in separate sections. We identify the former
as the limit of small conduction and the latter as
the limit of small capillarity. Hence, we investigate
boundary layers due to vapor piessure lowering and
heat conduction in the first case, and due to capillarity
in the latter. The nature of the critical heat flux for
bottom heating in a heat pipe problem. and its depen-
dence on process parameters are examined in detail.
Finally. for both heat pipe #nd geothermal problems
we identify regimes, where stecady-state counterflow
may not ¢xist,

FORMULATION

We consider the stcady state, onc-dimensional,
countercurrent low of a single component, two-phase,
liguid—vapor (e.g. steam—water) system. As a result
of an externally imposed heat flux ¢, threc regions

develop [18]: two no-flow regions (I and I in Fig. 1)
containing mostly vapor or liquid, respectively, and
an intermediate two-phase region (I, where counter-
flow occurs. In our notation, the space coordinate x
increases in the direction {rom the liquid to the vapor.
The system is inclined at an angle 0 with respect to
the horizontal, such that vapor is at the top when
0 < U < 7, and at the bottom otherwise, n < 0 < 2n.

Momentum balances for the fluid phases arc
described by Daicy’s law

k op o0

Vie=— kgl 57 +pLgsm ”) (n
I X Y.
ko [Py .

Ve = — - kpy (l e +pyg sin (}) {2)
Ly Cx

where the relative permeabilities &, and k., depend
on the liquid saturation. S. This formulation ignores
viscous coupling. that may be present in coun-
tercurrent flows [23]. The two pressures are related
via the capillary pressure function

7 Hs) 3

Py— P = PAS) =
LS
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F1G. 1. Countercurrent flow schematic.

where a typical representation in terms of a Leverett
J function was introduced.

Salient features of relative permeabilities for vapor—
liquid systems are discussed elsewhere, following a
percolation approach [20, 22], where the roles of pore
space geometry and topology are emphasized. The
residual saturation values (Sy,, Sy,), below which bulk
flow of the respective phases ceases (k. , k,v vanish,
respectively), should be noted. In the ensuing dis-
cussion use will be made of the simple, although ad
hoc, numerical expressions of Table 1.

Table 1. Typical parameter values

S, =020
Sy, = 0.05
T,=171.1C
P, = 15psi
o =15891dynem™!

vy = 18.76 cm® mol !
pL=09606 gem ™’

pyv = 0.0006 g cm™?
uo=2824x10" gem 5!
Uy =1260x10"*gem s~
A=30Wm 'K™!
dy=12Wm 'K~

. 41— Ay .
fn == (L =Sy —=Su) + 4

S—S.Y
= (‘1‘4 s)

[-S,,—~SY
(55

P, =224-2755+1.38*

We subsequently take
v
Pv:-Pvn(T)eXp("R;Pc(S)) (4)

to describe pressure lowering, and use the Clausius—
Clapeyron formula

LVM( 11
PV()(T) = P\/()(TQ)CXP - R - \TIT _ f (5)

for phase equilibria. Mass and thermal energy bal-
ances complete the formulation

PV L+ pv Ve =0 (6)
0T
oviy Vvt gy :/-E; (7

where all fluid properties are taken independent of P
and T. Due to different flow behavior the three differ-
ent regions (Fig. 1} are examined separately.

No-flow regions (I and ITT)
Region I is a no-flow, mostly vapor-occupied zone,
where

0<S<8S, (3)

thus k, (S) =0, V,, =0 and, from equation (6),
Vv, = 0. At the residual value S, ,, bulk liquid in the
pore space becomes disconnected, and bulk flow
ceases. The liquid being strongly wetting, keeps
hydraulic continuity in the form of thin film fow.
however, even for S < S,,. These rates are quite low
and will not be considered here. Thus, the pressure of
the vapor phase is hydrostatic and the temperature
distribution linear

Py =P, ~pygxsinf (C))]
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T =T +gux/4 (10)
where P,. T| are constants. A saturation profile results
1 Py (T X/
JS) = -In vo( |+({h\/41) (a0
b P —pygxsinl)

where the dimensionless group b = ar, /RT/k para-
metrizes Kelvin effects. For media of practical interest
(0 << 1), the liquid is at low saturation (J(S) > 1) in
most of region [, and exists in a pendular state where
cffects of thin films are predominant. Recent works
[24.25] have clucidated the capillary pressure--satu-
ration relationship in this regime for non-condensing
flows. In this paper. such effects are not considered.
The extent (x)) of the vapor zone [ is demarcated by
setting S = S, in equation (11). For # « 1. onc may
further approximate

Py(Ty+qvx(/7) = Pi—pygx,sin 0 (12)

which is the condition for vapor saturation, and deter-
mines the boundary of the two regions 1. 1. The
sharp saturation rise to the residual value S, ncar
the boundary (where the logarithm in equation (11)
becomes of order ) should be noted.

Likewisc. region I is a no-flow. mostly liquid-
occupied zone, where

I-S., <S<I (13)

thus. k. (S) =0, Fy, =0, and, from equation (7),
I, . = 0. Pressurc and temperature profiles are lincar

P, = Py —p gxsinl (14)

T = T +gnxiin (15)

with Py,. T\, appropriate constants. However, in con-
trast to region I, where a saturation profile exists due
to the liquid wetting, the bulk of region HI (ITfb in
Fig. 1) is at .§ = 1. Saturation changes are confined
within a narrow domain (If1a). the boundary of which
{x) is the solution of P, =0

Poo(Tiy+qu¥sidng) = Pyy—prgx;sin 0. (16)

To the left lies boundary v.. obtained by taking

S=1-5,
Poo(Tyyy +gu X2/ An) = Py~ prgx,sin

a
+ J =Sy (17)
\"/\'

and where Kelvin effects were neglected without loss.

Flow region

The region of two-phase, countercurrent flow is the
most interesting. Saturation and temperature profiles
are described by two coupled equations by combining
equations (1)--(7). After considerable algebra. the fol-
lowing is obtained :

dt _ H(L.S)

= 1
dé  F(z.S) (18)
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ds  G(r.9) "
4E " L g (%)
T, )dS

where dimensionless notation has been used. with ¢
denoting distance normalized by o/ (k)gAp. and 1
denoting temperature normalized by a reference tem-
perature T, The functions H. F. and ¢ are given
respectively by

H =k, [(14hR ARy +5in Ok (bR, A— R R.)|

+hk R R A (20)

A
F=hky| I+bR A+ KR, T,}ﬁ-bk,v/iRpAA 2n
and
, [ A A
G =k |sinOR+KR,R, . +sin0k KR, |, j
" T

4
+ Bk [sin OR + KRR, J (22)

Variable 4 is a vapor pressure normalized by the
saturation pressure at 7, and includes Kelvin cftects

4= exp <I\< - 1)4)1(5))-

All dimensionless groups arc defined in the Nomencla-
turc and they are functions of the fluid and rock
propertics. with the exception of

(23)

Eng

R, = (24)

n T,,\;"(l\’)‘(/Ap
which is a measurc of the imposed heat flux, and is
simply related to the parameters o or I' defined in ref.
[18] or rel. [16]. respectively

CRR, Ty

= . 25
R, klvgAppy =)

)
The above constitutes an initial value problem to be
solved subject to appropriate initial conditions. The
latter vary according to the application. For the heat
pipe problem [18] we take

T,

Tu! (26)

7= S=38, at <=
where T = T+ ¢u X,/ 4, the reference temperature T,
corresponds (o the (dry) end of the vapor zone, und
the integration is in the direction of decreasing . For

the geothermal problem [16] the initial condition is

t=1. S=1 at <=0 (27

The reference temperature 7, corresponds to the
boundary of rcgions I1la IIIb. and the integration
is in the dircction of incrcasing &. Forward integration
of equations (18) and (19) subject to equation (26) or
(27) uniquely determines saturation and temperature
profiles in the two applications.
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For future reference the expression for the dimen-
sionless vapor flow velocity Vy,, normalized by
kApg/iy, is also derived

A
krver[sin OR,—bR,A+KR,R, ?2]
V‘V\‘ -

F(z.S)
(28)

It must be remarked that, for all practical purposes
(b « 1), the magnitude, but not the sign, of the angle
(} can be scaled out in equations (18), (19), and (28),
by a simple rescaling of the space variable ¢ by |sin 0|
and of the heat flux term R, (or w) by 1/|sin 0. Thus,
it only suffices to study the generic cases @ = /2, 3x/2.

Contrasted to the above, and excluding field-scale
numerical simulators, present models are quite simple.
We refer to Udell [18, 19], for the heat pipe problem
and to Schubert and Straus [16], for the geothermal
problem. As shown below, these models arise as limit-
ing cases of the present formulation. To facilitate the
presentation, however. the two cases will be examined
separately. We proceed by applying equations (12)-
(28) to the two problems.

HEAT PIPE PROBLEM

In the context of the heat pipe problem we inves-
tigate Kelvin and heat conduction effects, and will
explore the critical heat flux curve. For this purpose,
we will frequently refer to the model in refs. [18, 19],
which represents a particular limit of the present
model. We shall denote by ©, I, and ¥ the tempera-
ture, saturation, and vapor flux, respectively, cor-
responding to refs. [18,19]. In our notation, that
analysis is tantamount to taking in equations {18)-
(28) the limits # « 1, and KR, >» 1 with R, /R, fixed,
the latter condition corresponding to negligible heat
conduction. Indeed, at these limits, the vapor flow
rate, equation (28), reduces to

—Vy.»¥=w (29)

and the saturation equation (19) becomes uncoupled
from temperature

d
J

g (30)

. LB
=sin {)+w<krv -+ er>.
The above two limits place constraints on the validity
of previous results. Clearly, the condition for neg-
ligible Kelvin effects, b « 1, is generally well satisfied
for most porous media of practical interest (e.g. per-
meabilities exceeding O(10™'* m*)). Neglecting heat
conduction, on the other hand, requires KR,, » 1 at
fixed R,/R,. a significantly tighter restriction (e.g.
k> O(10 ' m?) for the experiment in ref. [18]). As
shown in subsequent sections, substantial changes
may result when this condition is not satisfied. We
proceed, first, by examining the effects of the two
constraints on saturation and temperature profiles,

AT N
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Boundary layer analysis

As a consequence of conditions b« 1, KR, >» 1
two boundary layers arise at the ends of region II.
This is evident from expression (29) which dictates a
step change in the vapor flux, thus infinitely large
evaporation—condensation rates, at the boundaries.
In actuality, the vapor flux vanishes smoothly at the
two boundaries {(where the two relative permeabilities
also vanish). This feature is retained in the present
formulation, as can be seen from an expansion of the
full expression (28)

Sl sos,
Viw ~ fe 31
- §V§§PR“A ;. S—1-8,,

The singular behavior of expression (31) in the respec-
tive limits (b « 1, KR, » 1) is apparent. We shall
analyze the solution in the two boundary regions. Near
the dry zone the more general case b « 1, finite KR,,,
is considered.

(i) Case b « 1, finite KR,

Here, a boundary layer in the vapor flux develops
at the evaporating end (near S, ). The outer solution
outside this layer (superscript (0)) is obtained by
neglecting Kelvin effects in equations (18), (19), and
(28)

dr*? _ Ry—kyR.R:sin 0

dé KR A
: Tk

(32)

G(T[n) , S(o))

dé KR, A
: er(HkN- )J'(SW)

@

(33)

A
sin 0 k,y [Rv +KR,R, E?"*TZ}

(o)
VV.\' =

(34)
T+ky—5
Near S;,, the saturation (although not the tem-
perature) gradient diverges, thus a change of scales is
needed. By taking the typical expansion,
ko~ L(S—S.,)", where L > 0is constant and n > 1,
we rescale

S =8§,+50(z) (35)
E=8i~b: (36
with «, k > 0 to be determined. Substitution into the

full equations (18) and (19), subsequent expansion
and use of the dominant balance [26] results in
1

o=
n

(37

K=l (38)

In this asymptotic technique the set of exponents is
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uniquely determined such that the singular behavior
of the outer solution is eliminated. It follows that the
{evaporation) boundary layer is of the order b'*'",
Furthermore, the saturation profile within the layer
can be constructed by substitution and integration

|

g

- = 07, 3
G+(n+l)(' ¢ (39)
The corresponding vapor flux in the boundary layer
is obtained from equation (28) by substitution of
cquations (35) and (36)

PVUSL)

Ve, = .
YW e

(40)
This expression correctly predicts that inside the
boundary layer, V. varies smoothly, by vanishing at
the one end (o = 0) and by asymptotically approach-
ing the outer value, V{!(S,,), at the other (6 — )
(Fig. 2). Likewise, the dimensionless evaporation rate
m = dVy, /dé can be evaluated

f'o_n !

h|+ | n|:] + O‘”:|}
¢

where ¢, e, and f are process constants (Appendix).
A normalized plot is shown in Fig. 2. It is noted that
in this approximation (b « 1) all evaporation takes
place within the boundary layer, #1 increasing to a
maximum value, before rapidly decaying to zero at
the other end of the boundary layer (z —» + o). As
shown in equation (41), the local rates intensify for
smaller values of b. for example when the permeability
increases, such that, however, the total evaporation
rate remains finite

"=

(41)

C. SATIK e! al.

I: 4‘blﬁ»lun-/ld,_,:__;/;(:
0 - (’I’l-

Of course, the latter equals the jump in the outer valuc
VS, which is discontinuous at S, ,.

The above analysis shows that in most practical
cases (b « 1) the cvaporation region is a thin layer of
order ' ' at the interface between dry and two-
phasc zones. Outside this layer in region IL, Kelvin
effects are insignificant, and the process is well
described by the outer solutions (18), (32), and (34).
In particular, an analysis of the latter equation shows
that the vapor flux magnitude |V'{!] continuously
decreases. as S increascs, suggesting that condensation
occurs over the entire two-phase zone, and not strictly
at the end, as normally assumed. Of course. local
condensation rates depend on the value of KR,,. For
large values of the atter, as implicitly taken in refs.
[18,19], condensation is restricted on a boundary
layer at the interface between liquid and two-phase
zones. This boundary layer is due to heat conduction
alone.

(i) Case b «< 1, KR,, » 1. R,/ R, finite

In this no-conduction limit, the outer solutions (.
%, and W) are given by expressions (29) and (30) and
by

(42)

d® w—k R, sinl
PdET KA
’ ®3 kr\'

(43)

Under the tacit assumption b « ¢ = 1/KR,,, the pre-
vious analysis holds. and only the boundary layer near
1 — Sy, needs to be considered. Now, however, the
temperature gradient also diverges. To proceed, we

x107
409
24 40.8
Jo7
15F 406
m los 755
Ir ¥0.4
loa
ost lo_z
o1
0 s ‘ﬂ—.:.’l PP S UV VI ] 0
10-3 10+ 103 102 10t 100 10!
z

FI1G. 2. Boundary layer profiles: normalized vapor flux and evaporation rate.
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first note that, to first-order, the boundary tem-
perature at &, is given by the outer solution by com-
bination of equations (33) and (43) and integration

] (1_kWR‘Sm0>J'(S)dS
1=Sy, w
RP(A3~A,)=wf

" k| sing AL
wvismmb+w o kL

(44)

Here A4 = exp [K(1 —1/@)] and it was implied that the
denominator does not vanish (but see also below).
Next, we rescale saturation, spatial distance and tem-
perature as before

S=1-58y,—da(z) {45)

(—Ey ="z (46)

0 =0,+5n(2) 47

to obtain with the use of dominant balance

1

=7y =- (48)
m

K=14~ (49)
m

where m is the exponent in the permeability expansion
ky ~ M1 —5—-8,.)". The rescaled saturation sat-
isfies the equation

do _
dz ~

oG

Trasspnemcey %

where G = 4,/©3. An analysis similar to the previous
one also applies, and identical results can be reached
regarding condensation rates. For example. the vapor
flux inside the boundary layer has the form

W
E— (51

1+
LG

which correctly predicts that ¥, vanishes at 1—.S\,
(g = 0), while it approaches the asymptotic value —w
in the outer limit (¢ — oc). We omit further details
and only mention that at such conditions, vapor con-
densation is restricted in a boundary layer of width
8'* """ at the end of the two-phase zone. The boundary
location and the boundary temperature are accurately
approximated at large KR, from the outer solutions.
The temperature drop across the two-phase region
is given by equation (44), which reflects solely the
interaction between capillarity and phase change.
We conclude that in general cases of practical inter-
est (b « 1) evaporation occurs only within a boundary
layer in the vicinity of the vapor zone, outside of which
vapor pressure lowering due to Kelvin effects can be
neglected. By contrast, condensation is driven by heat
conduction and. unless § = 1/KR,, « 1, it may not be
neglected in the bulk of the two-phase zone. In several
practical applications, KR,, is not necessarily large,
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thus previous results [17-19] may be inapplicable. The
effect is most significant in the estimation of the critical
heat flux as discussed in the next section.

Critical heat flux

Critical heat flux was defined as the minimum flux
above which dry-out occurs and a two-phase zone
exists [17, 19]. At large values of k& (or KR,) the critical
flux can be readily obtained from equation (30)

= (—sl (B A A 2
W, = {—sin 0) max {(kn _karv)} (52)

(see also ref. {19]), a value largely independent of
process parameters. In the more general case,
however, a more elaborate approach is required.

To proceed, the problem described by equations
(8)—(27) was solved using a numerical scheme based
on stiff ODE IMSL solvers, the integration starting
from region | and consecutively marching through
regions I and IH. Standard runs were carried out at
the conditions of Table 1. Subsequently, a systematic
numerical study was undertaken. As anticipated,
results consistent with refs. [18, 19] were obtained in
the limit of large KR,. For example, in the more
interesting case of bottom heating [19], critical
heat flux values . were found, such that for
o/(—sin §) > o,,. a two-phase zone exists of a length
that decreases as w increases. This behavior was thor-
oughly analyzed previously [19]. Unexplored in past
investigations, however, were the effects of k and the
nature of the solution for w < w,,. While at large k&
(or KR,,). o, approaches the asymptote (52), it was
also found that it slowly increases with decreasing k,
and it rapidly diverges when a critical permeability
value ky, is approached (Fig. 3). This singular behavior
was verified for a host of parameter values, the stan-
dard case yielding the estimate k, = 144 md. well
within the range of natural reservoir rocks.

This interesting feature has not been noted before.
For given conditions, a critical value &\, can be demar-
cated such that steady-state solutions are possible for
k > ky, in which case a minimum heat flux is required
(region A in Fig. 5). The magnitude of the latter is not
constant as previously held, although it approaches at
large k the asymptote (52). In the opposite case,
w < o, ork < k,, saturation and temperature profiles
are ill-behaved. in a manner to be specified below,
and the existence of steady-state solutions must be
questioned.

To analyze the critical heat flux at bottom heating,
the nature of the solution for w < «,, must be exam-
ined. We consider a representative example with
k=10""" m’ and parameter values S;, = Sy, = 0.
Here (k > k) the critical heat flux is @, = 0.45, sig-
nificantly larger than 0.306348 obtained from the esti-
mate (52). Typical (7,5) trajectories are shown in
Figs. 4-6 for the values w = 0.1, 0.4, and 0.5, respec-
tively. Also plotted are the level curves when the
numerator in equation (19) vanishes, G(1,S8) =0, a
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Fii. 3. Critical heat flux as a function of permeability for bottom heating.

condition necessary for the change of slope in the
(7, S) trajectory.

The first case (Fig. 4) is characteristic of one kind
of ill-condition, namely that the domain G > 0 is dis-
connected and does not extend over the entire satu-
ration interval. As a result, the solution trajectory
changes slope at some point (A in Fig. 4), and further
penctration into the two-phase region leads to pro-
gressively higher stcam saturation and unphysically
low temperatures. Previous investigators [17, 19] sug-

gested that a two-phase zone of “infinite’ length would
develop under such conditions. While it is true that
the penetration depth for a given saturation is sig-
nificantly higher and in fact it should increase cven
more as KR, increases (both the trajectory and the
G =0 level curve become stecper in the latter case),
unrealistically low temperatures and vapor pressures
are eventually reached and the two-phase zone ter-
minates at non-physical values. We argue against the
cxistence of a steady state under such conditions.

1.6 T T T T T T T - .
14} i
1.2F : .

T ;
! G>0
1F ; -
G<0 R

R X . " L . . . |
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N

FiG. 4. Temperature vs saturation solution trajectories for bottom heating and @ = 0.1: the dashed curves
correspond to G = 0.
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The second case (Fig. 5) is characteristic of a differ-
ent kind of ill-condition. Although the domain G > 0
spans the entire saturation interval (0, 1), the value
of w is not high enough, thus the (z,S) trajectory
intersects the G = 0 curve before it reaches the end of
the two-phase zone. This condition is entirely due
to the finite value in KR,,, the no-conduction model
predicting no  pathological  behavior  for
® > 0.306348, as pointed out above. At the point of
intersection A, the saturation profile has a turning
point and the ill-condition of the previous case is
encountered. On the other hand, for sufficiently large
values of w, the two curves are at large enough
distance, such that the solution trajectory terminates
at the end of the two-phase zone before intersection,
and a true heat pipe is established (Fig. 6). Smaller
values in & lead to increasingly larger critical heat flux
values and, at least within a certain range of k away
from k,,, the above interpretation of the w,, vs k curve
applies.

While the departure of ., from the asymptote (52)
was attributed primarily to conduction, near the
threshold region (k ~ k,) capillarity becomes pre-
dominant. The condition determining w,, still remains
the same, namely that a turning point (where G = 0)
in the saturation profile develops. Tt was numerically
observed that the latter first occurs at the end of the
two-phase zone, where S — 1 — Sy, and &,,, = 0. Sub-
stitution in G = 0 yields after manipulation of equa-

tion (22)
o 1 7? |
“sin0 T KR\ AL

(53)

where w,, was assumed large. Indeed, as k approaches
ky,, @, becomes infinitely large, which, in view of the
finite value of KR,,, must be attributed to the van-
ishing of the vapor pressure 4,. An estimate of the
vapor pressure at the large w limit can be obtained
from equations (18) and (19)

KA dr _dJ ko

asar % - 4
P12 dS  dS (k. +Pkw) (54)
which can be further integrated to
[ ’
vk, J'(S)dS
R (A,—A4,) ~ —_— 55
Az J ki +Pl) Y

We note that as expected, this is also the limit of
equation (44) for the case of horizontal heating
(sin 0 = 0). We conclude that the critical threshold £,
can be determined by simply taking in expression (55)
the limit 4, « 1

e (o[ [T (4 keds T
TP L\ dS) ke + Bk |

Thus, while the behavior of the critical flux near the
two threshold regions is significantly influenced by
conduction (see expression (53)}), the permeability
threshold k,, is solely dictated by capillarity. The ana-
lytical expression (56) contains all features observed
in our numerical investigations. Thermal conductivity
was found to have no effect on k,, although it sig-
nificantly influences the shape and magnitude of the
critical curve. A sensitivity, generally weak, with
respect to the residual saturations (which lead to a
decrease of the overall permeabilities in the model of

(56)
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F1G. 6. Temperature vs saturation solution trajectories for bottom heating and @ = 0.5: the dashed curve
corresponds to G = 0.

Table 1). Most significant, however, are the cffects of
capillarity and the imposed pressure P, the threshold
value varying in proportion to the square of o/P,.
While substantial changes in ¢ mainly require changes
in the fluid chemistry, large variations in P, can be
readily accomplished. Therefore, a wide variation in &,
is possible. For the typical conditions of laboratory
experiments with heat pipes, relatively high thresholds
should be expected. By contrast, very small &, values
(of the order of 10 '7 m*) would be obtained for
geothermal systems. The agreement between numeri-
cal and analytical resuits is excellent.

For completeness, and after additional algebra, an
estimate of the critical curve near &k, may also be
derived

, (const)

“sin0 " KRy (k—k,)(In |k—ky|)>

or

(57)

The latter contains, through R, observed effects of
the thermal conductivity. 2. As previously remarked,
conductivity does not affect the threshold value,
although it influences the shape of the critical curve.
Although the above pertains to bottom heating,
essentially similar results were numerically obtained
for the case of top heating, as well. As expected, no
constraint in the process parameters was found for
sufficiently large k. At smaller permeability values,
however, a sensitivity similar to the case of bottom
heating was detected and a similar (although not
as sharp) threshold value, k,, was identified. Now,
steady states are possible for any heat flux value, if
k > k.. and for sufficiently low heat flux values,

w < ., if k <k (region A in Fig. 7). When these
conditions are not satisfied (region B in Fig. 7), a
steady-state counterflow may not be sustained. Sen-
sitivity studies revealed features similar to the case of
bottom heating. Capillarity and imposed pressure P,
were found to be the most important variables. In fact,
the two thresholds A, and &, were found to practically
coincide. Likewise, the onset of critical behavior
coincides with unphysically low temperatures, first
encountered at the end of the two-phase region. In
the limit | « @ < w,. it can be easily shown that the
previous analysis, notably results (56) and (57), apply.
To provide a better pictorial, the composite of «,,
near the threshold region was constructed (Fig. 8).
For the case of top heating (0 < 0 < 7), stcady-state
solutions are possible within the ‘tunnel’ at the front-
left, the cross-section of which expands to an infinitely
large value when k > k. Conversely, for bottom heat-
ing (m < 0 < 2m), steady states can be sustained only
outside the ‘tunnel” at the back-right, the cross-sec-
tion of which also diverges when k < k,,.

We shall conclude this section by providing an alter-
native physical interpretation of the threshold con-
dition (57). For this, we first consider the horizontal
case, 00 = 0, which demarcates the boundary between
top and bottom heating. For negligible Kelvin and
other secondary effects. the two-phase flow region
starts when the vapor becomes saturated, Py = P,,.
Counterflow in this region is possible only because
of capillarity. In fact. the changes in vapor pressure
and capillary pressure are interrelated

ko
ARy 1

dp.. (58)
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F1G. 7. Critical heat flux as a function of permeability for top heating.

As long as capillarity is small, the vapor pressure drop
across the region

PAS) O k.
Py =P,— o dp,
¥ 0 [} er +ﬁkr\/

is not large and P, > 0. Problems arise when the per-
meability is low, such that capillarity is large enough
for the right-hand side above to become negative.
It is straightforward to show that the onset of this
condition is at the above threshold, k,. Below this
value, capillarity is large, thus negative values for Py
result. Clearly, k,, (or k,) also denotes the lowest per-
meability value below which steady-state, horizontal
counterflow cannot be sustained.

When the medium is inclined, gravity opposes or
supplements capillarity, depending on whether the
vapor overlies or underlies the liquid. For instance,
the expression equivalent to equation (59) is

(59)

PaAsy) k L Y
P, =Py— = dP, i I
v 0 {] er+/))krV ~+p‘_y o 0 A% dx
(60)
where
er +/;karv
= T a 61

K+ Py D

When heating is from the top, capillary pressure is
counterbalanced by adverse gravity effects, and a two-
phase region may exist even for k < k, provided that
the heat flux is small enough. One may recall that the
extent of the two-phase zone increases as the heat flux
decreases. Opposite considerations apply for the case
of bottom heating. At least near k,, gravity would

supplement capillarity in increasing pressure drops,
with a contribution roughly proportional to the extent
of the two-phase zone. At low w < w,,, the latter is of
large enough extent, thus a steady state cannot be
sustained.

One concludes that consideration of conduction
and lower permeability values in the heat pipe prob-
lem leads to unexpected, and non-trivial corrections,
particularly for the case of bottom heating. The rel-
evance of the threshold k, to heat pipe problems which
place emphasis on capillarity cannot be discounted.
A measure of the latter is the parameter R,,. For values
of R, of order 1 or less, the obtained k, value is of the
same order with the medium permeability (compare
equation (56)), and the problems analyzed above are
likely to be encountered in such heat pipes. This is in
contrast to geothermal problems, where capillarity is
usually negligible (large values of R,,).

GEOTHERMAL PROBLEM

The second part of this paper addresses the geo-
thermal version of the vapor-liquid counterflow,
specifically the problem considered by Martin et al.
[15] and Schubert and Straus [16]. Here 0 < 0 < 7,
but the heating is from the bottom, thus, in our
notation, the imposed temperature gradient and heat
flux are negative (in the direction from the liquid to
the vapor). We shall take reference values cor-
responding to the liquid two-phase zone interface,
where for simplicity Sy, = 0 will be assumed. Inte-
gration proceeds in the positive ¢-direction, from the
liquid towards the vapor. The condition derived in
ref. [16] is also recalled that the underlying liquid be
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subcooled, hence the temperature gradient or the heat
flux may not exceed an upper limit. In our notation
one obtains the equivalent condition

R !

R 2
KR, KR, (62)

As previously discussed, the geothermal version of the
counterflow formulation (18)—(22) is obtained at the
following (no-capillary) limit in the absence of Kelvin
cffects

KR, » 1. (63)

With reference conditions corresponding to the top of

the liquid zone, the above condition reads as follows :
L.P.M, o

Ll P (64)

RT,  k

Consistent with refs. [15, 16]. conditions (63) or (64)
imply that capillarity is of sccondary importance and
sharply differentiate geothermal and heat pipe prob-
lems. Ta proceed we recast equations (18)—(22) in the
form

dJ
df B .l\rl,[KRn\(‘('))+KR||1RVArV] dS (65
ds = TF G(z.5) )
ds G(1.S
B s (66)

where we denoted & = |/KR;, and the expression for
G, equation (22), has been rewritten as

kr\']
T

A .
G(1,S) = k, [Rl +KR,» 5 +KR,, -
-

1o B

, y
+[fk,VLRx+KR,“wI:]. (67)

As in the heat pipe problem it is convenient to charac-
terize the solution of the problem using solution tra-
jectories (Figs. 9 and 10). Of particular importance in
this respect is the critical curve where G(z, §) = 0 (Fig.
9). In general, G and KR,,w are of O(1) or less (com-
pare with expression (62)). Thus, in the limit » « I,
solution trajectories (1, S) have constant temperaturc
(d7/dS = 0). in regions where G is not small, and
closely follow the G = 0 curve, otherwise (compare
with equation (65), Fig. 9). In the region of constant
temperature, the saturation changes rapidly over an
interval of O(1) in length (Fig. 10) (which, as recalled.
expresses @ balance between gravity and capillarity in
the present notation). It is in this region (taken as
a sharp interface in previous works [15, 16]). where
capillarity influences the saturation profile.
Significant temperaturce changes start occurring
when the solution trajectory approaches the curve
G(z.S) = 0. For the conditions of Fig. 9, the latter
interval (AB in Fig. 9) is the vapor-dominated regime
analyzed by Schubert and Straus [16] for a simpler
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F1G. 10. Saturation vs distance for the geothermal problem and ¢ = 0.0265275.

model involving straight-line relative permeabilities.
As is apparent from equation (66), in this domain, the
saturation gradient is very small (G « 1) thus, the
spatial extent of the region is quite large (Fig. 10). In
the limit & « 1, the region commences at saturation
S* (approximately at point A) satisfying G(1, S$*) = 0,
a condition previously derived although in a different
notation [16]. At larger values of ¢, however, capillarity
can become important and must be also considered

(Fig. 11). Here, although ultimately attracted to the
curve G(7, S) = 0, the solution trajectory shows sub-
stantial temperature variation before the vapor-domi-
nated region is entered.

With an approximation that rapidly improves as ¢
diminishes, the previous analysis [16] describes the
behavior of steam-—water counterflow in the geo-
thermal context with excellent accuracy. Con-
siderations similar to ref. [16] were also advanced by
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Fig. 1. Temperature vs saturation solution trajectories for the geothermal problem and & = 0.0838876:
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Martin er al. in an earlier publication [15]. While also
identifying the vapor-dominated regime. they have
additionally proposed the existence of liquid-domi-
nated regions. The present formulation readily yields
such solutions as well. For this, it is required that the
cquation G(1.S5*) =0 admits two solutions, a con-
dition that can be met at higher values in w.

At such conditions, the (z.S) diagram is divided
into three regions (two far regions with G < 0 and a
middle onc with G > 0) by the two branches of the
curve G = 0 (Fig. 12). The theory proposed earlier
[15] can then be rephrased as follows in the present
context: vapor- or liquid-dominated regimes com-
mence at point A or B, respectively. where
G(1.58%*) =0, and they subsequently follow the
respective branches of G(z,.5) =0 (paths AV, BL.
respectively). Such behavior appears consistent with
equations (635) and (66) in the limit & «< 1. but it is
doubtful that it actually materializes at stcady state.
for the following reasons.

By definition, a solution trajectory must originate
from the top of the liquid zone (point C. where v = 1,
S=1 and G < 0), other starting conditions being
impossible in a steady-state counterflow system. This
trajectory has a slightly negative slope and approaches
the G = 0 branch to which it rapidly becomes parallel
(dashed-line path CD in Fig. 12). Somewhat anal-
ogous Lo the heat pipe problem, the solution trajectory
crosses over 1o the middle region (G > 0). acquires
positive slope and parallels the branch G =0 from
the other side (note that the two curves practically
coincide in Fig. 12). The immediate implication is that
the trajectory suggested earlier (path BL) may not be
acceptable.

While being different than previously proposcd
(path BL), the other alternative solution (path CD)
is not acceptable either. An inspection of equation
(66) readily reveals that ¢ must decrease along path
CD. contradicting the requirement that, by conven-
tion. ¢ increases in the direction from the *liquid’ to the
‘vapor’. The other alternative, namely the trajectory
extending from point C in the direction opposite (o
B, is also rejected as it leads 1o saturation values larger
than one. It becomes evident that under such high
heat flux conditions, a liquid-dominated regimc of
this type is not realistic, while the associated vapor-
dominated regime is also ncver reached, certainly not
when the starting point is the top of the liquid zone,
as assumed throughout. One is led to conjecture that
{or such cases, which require that the heat flux exceed
a certain value, steady-state solutions are not possible.
The limiting heat flux is casily determined to be the
upper bound (62), which, us recalled, sets the necess-
ary condition for the underlying liquid to be
subcooled. This limitation, inherent to any such prob-
iem. serves to reinforce the above conclusion.

A final remark is also appropriate regarding the
analysis presented by Bau and Torrance [17]. These
authors examined a configuration with ( = 37/2 and
bottom heating (steam at the bottom, temperature
gradient in the direction {rom the vapor to the liquid
zone). a problem analyzed in the heat pipe section. In
addition to conduction, however, they also neglected
capillarity. Because of the latter, some similarities with
the geothermal problem may cxist. In our formu-
lation. their analysis corresponds to the conditions
KR, > 1, KR, » 1. By simple rearrangement, equa-
tions (18)—(22) read for this problem
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k kwvR il
dr ~ wl(o+kyR) (}S )
S5 4
G(r,S)—=
Siig = G,(T S,) d,S (69)

4~ ko k. dJ

where ¢ = 1/KR,, and the function G(z, S) here sim-
plifies to

G(T,S) = (kr[<+/}krv)w_erkrV' (70)

It readily follows that, despite the small capillary
effects, the problem is of the same nature as that
of the heat pipe thoroughly analyzed before. Thus,
identical conclusions must be reached regarding solu-
tion trajectories and the critical heat flux value, w,,,
which is the necessary lower limit for the existence
of a steady-state, steam—water counterflow. Under
the implied assumption of negligible conduction,
KR, > 1, this critical value coincides with the asymp-
tote (52).

CONCLUSIONS

In this paper we have attempted to unify the
description of a diverse set of problems arising in
heat pipe and geothermal contexts that contain the
common process of steady-state, vapor—liquid coun-
terflow. The formalism introduced encompasses sev-
eral previous studies, which arise as special cases at
various limits. In particular, a quantitative assessment
of the importance of gravity, capillarity, phase equi-
libria, heat conduction and Kelvin effects becomes
possible. A similar approach was also recently

implemented for the case of vapor-liquid concurrent
flow [27].

In the context of the heat pipe problem, it was
shown that Kelvin effects are of significance only over
a narrow boundary layer at the vapor—two-phase
boundary, and are otherwise negligible in the coun-
terflow region. Heat conduction was found to influ-
ence saturation and temperature profiles near the
other end of the two-phase region. It was conjectured
that for the case of bottom heating, steady-state coun-
terflow is not possible when the heat flux is below a
critical value. Contrary to previous results, the latter
is constant only in the limit of large permeability. A
permeability threshold value &, was identified, such
that no steady-state counterflow can exist for media
of lower permeability. The threshold reflects capillary
effects and is mainly a function of the imposed press-
ure.

The geothermal problem was similarly analyzed.
The results of Schubert and Straus [16], where capil-
larity is neglected, were recovered as a limiting case
of the present formulation. The same limit is also
applicable for the cases discussed by Martin et al. [15].
However, the liquid-dominated regime of the latter
was found to lead to non-physical predictions, and it
was suggested that such a steady state may not be
reached, at least not for homogeneous reservoirs. It is
hoped that the present analysis clarifies several of the
issues involved in steady-state, vapor—liquid coun-
terflow, and that it may be useful for further studies
in this area.
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APPENDIX

The dimensionless constants ¢. ¢, / are obtained by a
straightforward analysis. We obtain

where A, and 7, pertain to conditions

. PRA K (SL) I

o A
I+ko (SRR,

i
R +KR,R, ‘:;
1

T ORAS) {an
nl. R

f=— 5 JUS; e’ (I111)

at ¢,. For typical

parameter values [18] and & = 107 '? m?, we obtain the csti-
mates

c=2460%10 %, ¢=280.5169. f =3.0981x10°

UNE ETUDE DU CONTRECOURANT PERMANENT VAPEUR-EAU LIQUIDE DANS
LES MILIEUX POREUX

Résumé—Le contrecourant vapeur-liquide dans les milieux poreux apparait dans les mécanismes de
caloducs, récupération d’huile brute et les systémes géothermiques. Alors que les études précédentes
analysaient ces mécanismes séparément, on présente ici une description unique. L’analyse inclut la capil-
larité, la conduction de chaleur et les effets de Kelvin. L’importance de chaque terme est examinée dans
les différentes applications. On trouve que le flux de chaleur critique dans un caloduc n’est pas constant
mais qu’'il augmente quand la perméabilité diminue. On identifie un seuil de perméabilité au dessous duquel
des états permanents ne peuvent exister. Des conclusions sont tirées concernant les systémes géothermiques
dominés par le liquide.
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UNTERSUCHUNG DER STATIONAREN GEGENSTROMUNG VON
DAMPFFORMIGEM UND FLUSSIGEM WASSER IN EINEM POROSEN MEDIUM

Zusammenfassung—Die Gegenstromung von Dampf und Fliissigkeit in pordsen Medien kommt beispiels-
weise in Warmerohren, bei der Olriickgewinnung und in geothermischen Systemen vor. Im Gegensatz zu
fritheren Untersuchungen, in denen diese Prozesse getrennt analysiert worden sind, wird in der vorliegen-
den Arbeit eine einheitliche Beschreibung vorgestellt. Dabei werden die Kapillarwirkung, die Wirme-
leitung sowie Kelvin-Effekte beriicksichtigt. Die Bedeutsamkeit der einzelnen Terme bei den einzelnen
Anwendungen wird untersucht. Es ergibt sich, daB die kritische Wirmestromdichte in einem Wirmerohr
nicht konstant ist, sondern mit abnehmender Permeabilitdt zunimmt. Es wird auch ein Schwellenwert
fir die Permeabilitiit ermittelt, unterhalb dem stationdre Zustdnde nicht méglich sind. Entsprechende
SchlufBfolgerungen ergeben sich fiir fliissigkeitsgesteuerte geothermische Systeme.

UCCIIENOBAHUE CTALITMOHAPHOI'O MMPOTUBOTOKA TIAPA Y BOJbI B IMOPHUCTBIX
CPEJAX

Amoramns—TIpOTHBOTOK mapa M XKAKOCTH B MOPHCTBIX CPEAaX BO3HMKAET B TEILIOBBIX Tpybax mpu
pereHepauMy Macia, a TaKKe B FeOTEPMaIbHBIX CHCTEMaX. B oTnuuMe oT mpeablaymmx wccneqoBaHHi,
aHAIM3MPYIOLIMX 3TH OPOUECCH MO OTAENBLHOCTH, B IAHHOM CTaThe NpeAcTaBseHo 06061uenHoe onuca-
HUE, AHAJIH3 YYHTHIBAET KaNHJUIAPHOCTD, TEILTIONPOBOAHOOCTL H et Kenbpuna. PaccmaTpupaercs
3Ha4YeHHE KaXAOTo u3 3THX 3¢pekToB B pa3IHYHBIX NpuioKeHHSX. CHeNaH BaXHBIH BBIBOA O TOM, 4TO
KPHTHYECKHH TEILIOBO! NOTOK B TEILIOBOM TPyOe He ABIAETCA OCTOSHHBIM, & YBEMYHBAETCA C YMEHD-
LIEHHEM NpoHMuaeMocTH. OnpenesieHa noporosas MPOHHUAEMOCTD, HHXKE KOTOPO# CTalMOHAPHBIE COC-
TOSIHUA MOTYT HE CylIecTBOBaTh. CeNaHbl TAKkKe 3aKJIFOYCHHS OTHOCHTEJILHO TEOTEPMAJILHBIX CHCTEM,
B KOTOPbIX JOMHHHPYET XHUAKOCTD.
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